Seseorangyang menganalisis dan menafsirkan kumpulan data yang kompleks. Mulai dari pengumpulan, mengolah, dan menganalisis data dalam jumlah besar. Data Scientist adalah orang yang bertugas mengolah data dari Data Engineer dan melihat apakah ada peluang bisnis baru dari data yang dikumpulkan. Profesi Data Scientist dan Data Analyst merupakan dua profesi yang saat ini sedang digemari oleh banyak individu dan dicari oleh banyak perusahaan, mulai dari perusahaan besar hingga perusahaan baru atau startup. Kebutuhan akan sumber daya manusia dalam kedua profesi ini sangat banyak, namun tidak sebanding dengan ketersediaannya di karena itu, DQLab akan memberikan informasi kepada kalian terkait kedua profesi ini agar kalian dapat mengetahui, memahami, dan menentukan apakah kalian ingin mencoba prospek karir kedua profesi ini. Dalam artikel ini, akan dibahas mengenai pengertian Data Scientist dan Data Analyst, tidak lupa juga mengenai tanggung jawab atau tugas masing-masing profesi. 1. Pengertian Data ScientistMari kita mulai dari profesi Data Scientist, profesi ini menggunakan berbagai cara dan algoritma untuk menganalisis data yang diharapkan dapat menemukan solusi atas suatu masalah yang rumit atau kompleks. Data Scientist memerlukan kemampuan untuk mengungkap suatu pola dengan mengombinasikan beberapa pasang data, seperti perilaku konsumen. Dapat dikatakan bahwa profesi ini akan lebih mengarah kepada hal teknis dalam bidang data, selain itu juga Data Scientist membutuhkan keahlian untuk mengungkap tren yang sedang berlangsung. Apabila profesi ini bekerja dalam suatu bisnis, maka diperlukan juga pengetahuan bisnis supaya tujuan perusahaan dapat juga Mengenal Profesi Data Scientist2. Pengertian Data AnalystBerlanjut kepada profesi Data Analyst, banyak yang mengira bahwa profesi ini memiliki definisi dan tanggung jawab yang sama dengan Data Scientist. Hal tersebut salah besar. Profesi Data Analyst memang memiliki beberapa persamaan dengan Data Scientist, contohnya seperti tugasnya untuk menganalisis cakupan pekerjaan Data Analyst tidak seluas Data Scientist karena profesi ini tidak mengharuskan calon pekerja untuk mengerti bahasa pemrograman. Data Analyst dibutuhkan oleh perusahaan apabila volume data yang dimiliki perusahaan belum sangat besar sehingga tidak dapat menghasilkan data produk. Satu fakta menarik mengenai Data Analyst adalah profesi ini kerap disebut sebagai junior Data Scientist karena memiliki beberapa kemiripan dalam Tanggung Jawab Data ScientistSetelah mengetahui pengertian mengenai profesi Data Scientist, kalian tentu memerlukan informasi terkait tanggung jawab atau pekerjaan seperti apa yang nantinya akan dihadapi apabila kalian menentukan untuk menjalani profesi ini. Terdapat beberapa contoh tanggung jawab yang dapat kalian ketahui, seperti database perusahaan demi peningkatan kinerja model prediksi algoritma, model data, dan kerangka kerja pembuktian sumber data dari setiap informasi yang diperlukan agar tidak merugikan dengan divisi lain yang berkaitan dengan pekerjaan Data Tanggung Jawab Data AnalystBeralih ke profesi Data Analyst, apabila dengan membaca tanggung jawab Data Scientist cukup menantang, kalian juga bisa persiapkan beberapa kompetensi yang dapat diimplementasikan sebagai Data Analyst, apa saja? Yuk simak! Menafsirkan, menganalisa, dan membuat laporan terkait hasil dan mengimplementasikan database, serta strategi data dari berbagai tren atau pola dari kumpulan data yang data dan melakukan peninjauan dengan manajemen terkait kebutuhan bisnis dan dan menentukan peluang bisnis juga Yuk Kenal Role Data Scientist, Profesi Menarik Dengan Gaji Besar5. Tentukan Pilihan Profesi Kalian Bersama DQLabTidak perlu bingung dengan kedua profesi ini, kalian dapat mempelajari semua ilmu seputar profesi Data Analyst dan Data Scientist secara lengkap dan tuntas dengan DQLab. Disini kalian bisa mendapatkan materi pembelajaran dan berlatih dengan praktisi data yang berpengalaman. Apa kalian tertarik? Kalian bisa langsung sign up di untuk mulai belajar dengan mengerjakan module gratis "Introduction Data Science with Python and R". Ayo gabung di dan mulai sesi belajar kalian!Penulis Callista EugeniaEditor Annissa Widya Davita
DataAnalyst. Data Scientist. Data Engineer. Secara umum, seorang Data Analyst akan mengambil atau mengumpulkan data, mengaturnya dan menggunakannya untuk mendapatkan suatu kesimpulan sesuai dengan proyek yang sedang diamati, seperti penjualan, inventaris, atau media sosial.
Mengenal Perbedaan Data Engineer, Data Analyst, dan Data Scientist – Dalam era data yang semakin maju, peran Data Engineer, Data Analyst, dan Data Scientist menjadi sangat penting dalam memahami, mengelola, dan menganalisis informasi yang berlimpah. Meskipun ketiganya bekerja dengan data, masing-masing memiliki peran dan tanggung jawab yang berbeda. Dalam artikel ini, kita akan mengenal perbedaan antara ketiga profesi ini, serta bagaimana masing-masing peran berkontribusi dalam memanfaatkan data secara mengenal perbedaan-perbedaannya, perusahaan dapat memahami peran masing-masing dalam memanfaatkan potensi data secara optimal. Dalam artikel ini, kita akan menjelajahi lebih dalam tentang tanggung jawab, keterampilan, dan kontribusi yang unik dari setiap peran ini. Written by Nurul Akbar TanjungEdited by Santi Putri & Kibar Mahardhika Manfaat Data Bagi Organisasi & Perusahaan Data is the new oil merupakan slogan yang sering digunakan untuk menggambarkan pentingnya data dalam era digital pada saat ini. Perumpamaan ini menggambarkan bahwa data memiliki nilai ekonomi yang tinggi dan dapat menjadi sumber daya yang bermanfaat jika dimanfaatkan dengan baik. Berikut beberapa poin yang menjelaskan makna tersebutData memiliki nilai ekonomi yang signifikan misalnya data yang akurat, relevan, dan dikelola dengan baik dapat memberikan knowledge yang berharga bagi yang berkualitas tinggi dapat membantu organisasi mengidentifikasi tren, pola, dan knowledge yang dapat digunakan untuk meningkatkan efisiensi dan produktivitas bagi juga perlu diolah dan dianalisis untuk mendapatkan knowledge yang berharga. Hal ini dapat kita lakukan teknik analisis data yang tepat, organisasi dapat mengekstraksi nilai dari data mereka dan membuat keputusan yang lebih memanfaatkan data secara efektif, organisasi dapat mengoptimalkan kinerja mereka, mengembangkan produk dan layanan baru, serta mencapai keunggulan kompetitif dari produk yang dimiliki oleh poin di atas, kita sudah mendapatkan gambaran mengenai manfaat data bagi suatu organisasi. Lantas apa saja karir yang bisa kita tekuni di bidang data? Yuk simak penjelasan berikut ini! Peran Data Engineer, Data Analyst, dan Data Scientist Karir di bidang data dibedakan menjadi tiga yaitu Data Engineer, Data Analyst, dan Data Scientist dimana perbedaannya terletak pada fokus tugas dan tanggung jawab utama dalam proses pengelolaan dan analisis data. Berikut adalah penjelasan singkat mengenai perbedaan ketiga peran tersebut1. Data EngineerData Engineer bertanggung jawab untuk membangun dan memelihara infrastruktur data yang dibutuhkan untuk mengumpulkan, menyimpan, dan memproses data secara efisien. Tugas-tugas utama seorang Data Engineer meliputiMembangun dan mengelola sistem database dan perangkat lunak yang mendukung pemrosesan dataMendesain dan mengembangkan data pipeline untuk integrasi, transformasi, dan cleansing data dari berbagai sumberMemastikan integritas dan keamanan data dalam sistemMengoptimalkan kinerja dan skalabilitas infrastruktur data2. Data AnalystData Analyst berfokus pada pemahaman data dan pengambilan keputusan berdasarkan analisis utama seorang Data Analyst meliputiMenganalisis data menggunakan alat dan metode statistikMengidentifikasi tren, pola, dan wawasan penting dari dataMembuat laporan dan visualisasi data yang informatif dan mudah dimengertiMemberikan rekomendasi berdasarkan hasil analisis data kepada management3. Data ScientistData Scientist berperan dalam menerapkan metode ilmiah dan teknik analisis lanjutan untuk mengeksplorasi, menganalisis, dan memecahkan masalah kompleks menggunakan utama seorang Data Scientist meliputiMenentukan pertanyaan bisnis atau masalah yang dapat diselesaikan melalui analisis dataMenganalisis dan memproses data dari berbagai sumber untuk mendapatkan pemahaman yang mendalam terkait proses bisnis Membangun model prediktif dan algoritma untuk melakukan pemodelanMenggunakan teknik analisis statistik, machine learning untuk menggali pola dari dataMenerjemahkan hasil analisis data menjadi rekomendasi bisnis yang konkret Kolaborasi dan Interaksi Antara Data Engineer, Data Analyst, dan Data Scientist Dalam dunia yang semakin didominasi oleh data, kolaborasi dan interaksi antara Data Engineer, Data Analyst, dan Data Scientist menjadi kunci dalam menghasilkan pemahaman mendalam dari data yang ada. Ketiganya memiliki peran yang saling melengkapi dan bekerja secara sinergis untuk menerjemahkan data menjadi wawasan yang berharga bagi perusahaan. Mari kita lihat bagaimana kolaborasi ini Data Engineer berperan sebagai pengumpul, pengatur, dan pengelola data. Mereka bertanggung jawab untuk memastikan bahwa data yang diperlukan tersedia secara akurat, terstruktur, dan terintegrasi dengan baik. Dalam kolaborasi dengan Data Analyst dan Data Scientist, Data Engineer akan bekerja sama untuk memahami kebutuhan analisis data yang diperlukan, serta mengidentifikasi sumber data yang relevan dan metode pengumpulan yang Data Analyst menggunakan keterampilan analisis statistik dan pemodelan data untuk menggali wawasan dari data yang ada. Mereka memahami pertanyaan bisnis yang perlu dijawab dan menggunakan teknik analisis yang sesuai untuk mengungkap pola, tren, dan hubungan yang tersembunyi dalam data. Kolaborasi dengan Data Engineer memastikan bahwa Data Analyst memiliki akses terhadap data yang diperlukan dengan kualitas yang baik, serta memastikan bahwa pengolahan data dilakukan dengan benar dan Data Scientist bertindak sebagai jembatan antara data dan strategi bisnis. Mereka menggunakan pemahaman mendalam tentang algoritma, pemodelan statistik, dan kecerdasan buatan untuk mengembangkan model prediktif dan alat analisis yang kompleks. Dalam kolaborasi dengan Data Engineer dan Data Analyst, Data Scientist menerapkan pemodelan yang tepat dan menganalisis data secara holistik untuk memberikan wawasan yang bernilai bagi pengambilan keputusan kesimpulan, kolaborasi dan interaksi antara ketiga peran ini adalah kunci dalam memanfaatkan potensi data yang ada. Dengan bekerja bersama, ketiganya dapat mengoptimalkan pemahaman dari data, menghasilkan wawasan yang akurat, dan memberikan kontribusi yang berarti bagi kesuksesan untuk mempelajari ilmu Data lebih dalam dan berkarir di bidang Data? Ambil langkah pertama menuju karir yang gemilang di bidang Data dengan bergabung dalam bootcamp Data Expert di G2Academy. Tunggu apalagi, yuk gabung sekarang juga! Temukan berbagai solusi edukasi teknologi hanya di G2Academy!
Diera revolusi industri 4.0 ini, pekerjaan yang berkaitan dengan Big Data sangat dibutuhkan oleh perusahaan di berbagai industri. Contohnya adalah Data Scientist, Data Engineer dan Data Analyst. Peran penting dari ketiga profesi tersebut membuat pendapatan yang diterima cukup besar. Bagi kalian yang ingin bekerja menjadi salah satu profesi tersebut, kenali terlebih dahulu perbedaan dari Data Data science mungkin masih menjadi istilah yang belum terlalu akrab di telinga kita maupun kebanyakan orang pada umumnya. Namun, di dunia bisnis terutama yang berskala besar, bidang ini menjadi salah satu tumpuan menuju kesuksesan dalam perkembangan dan ekspansi suatu terkait data science seperti data analyst, data scientist, data engineer, serta business analyst memiliki peranan penting dalam pengumpulan, penerjemahan, hingga pengolahan data yang bisa digunakan untuk menjadi amunisi dalam menghadapi persaingan profesi tersebut memerlukan ketelitian tinggi dan tanggung jawab terhadap pengumpulan, pengolahan, analisis dan eksperimen data untuk menghasilkan informasi yang nantinya digunakan untuk mengambil keputusan demi kemajuan kamu tertarik untuk menjadi ahli di bidang data, beberapa skill yang wajib kamu miliki di antaranya kemampuan menganalisis data dalam jumlah besar big data, ilmu terkait sistem informasi, teknik informasi, statistika, dan sepertinya sulit, ya? Memang tidak mudah, tapi ilmunya sangat bisa dipelajari, kok. Selagi kamu punya kemampuan berpikir logis dan sistematis, menganalisis, dan suka mengolah data melalui terjemahan angka, kamu punya peluang untuk menjadi ahli data. Apalagi Kuncie punya kelas dan bootcamp yang akan mengupas tuntas soal data analyst. Kamu bisa ikut belajar meskipun belum memiliki rangkaian skill yang saja, nih. Profesi di bidang data gajinya tidak main-main, loh. Makanya, yuk kita pelajari ilmunya bareng Kuncie! Mulai Karir Data Analyst Sekarang Ikut Bootcamp Data Analytics dan mulai langkahmu menjadi seorang data analyst sekarang! Daftar Sekarang!‍Tanggung Jawab Pekerja Data ScienceBerikut ini adalah beberapa tugas utama yang akan dihadapi jika kamu memilih untuk berprofesi sebagai ahli dataMengidentifikasi masalah dan menggunakan data untuk memberikan solusi serta bahan pertimbangan untuk pengambilan keputusan yang algoritma dan merancang eksperimen untuk menggabungkan, mengelola, dan mengekstrak data menjadi sebuah laporan yang dibutuhkan. Menguji dan memilih metode data mining yang tepat untuk digunakan pada suatu peluang untuk optimasi bisnis atau organisasi. ‍Profesi di Bidang Data Science‍Data AnalystTugas utamanya adalah mencari, memproses, dan memvisualisasikan data dalam jumlah besar. Data analyst merupakan seseorang yang bertugas untuk mengolah data, mengambil kesimpulan, dan melakukan visualisasinya. Selain itu, data analyst juga mengemban pekerjaan sebagai pencari insight untuk memajukan bisnis dari berbagai aspek, yang nantinya akan dibantu pengolahannya oleh data engineer.‍Tanggung JawabMengekstrak data dari sumber primer dan sekunderMengembangkan dan memelihara databaseMelakukan analisis data dan membuat laporanMenganalisis data dan memperkirakan tren yang berdampak pada projectMemberikan rekomendasi yang relevan berdasarkan data temuan‍Skill yang dibutuhkanMenggunakan program seperti Excel, Google Analytics, Tableau, dan SQL. Harus menguasai istilah bisnis, SQL, Excel, membuat laporan dan tools pembuat infografik yang menarik.‍Data EngineerSeorang data engineer memiliki tugas untuk membuat desain arsitektur manajemen dan monitoring infrastruktur data di perusahaan. Profesi ini menuntumu untuk mampu mengelola jalur data untuk perusahaan dalam jumlah besar. Data Engineer juga harus memastikan bahwa data bisa dikumpulkan dan diambil secara efisien dari sumber ketika dibutuhkan, dibersihkan, dan itu, tugas lainnya adalah mengembangkan dan menguji ekosistem big data untuk bisnis sehingga para data scientist dapat menjalankan algoritma pada sistem data yang stabil dan optimal.‍Tanggung JawabMerancang dan memelihara sistem manajemen dataMengumpulkan dan mengelola dataMelakukan penelitian primer dan sekunderMenemukan pola dan memperkirakan trend dari data yang didapatkanMembuat dan memperbarui laporan berdasarkan hasil analisis ‍Skill yang dibutuhkanMenggunakan program seperti Hadoop, NoSQL, dan Phyton. Harus menguasai SQL, Databases misalnya RDBMS, NoSQL, Data Warehouse, Data Lake, ETL Tools seperti Pentaho, Ab Initio, Pipeline misalnya Airflow, Kafka, Luigi, Azkaban, pun dengan basic programming dan shell script.‍Data ScientistData scientist bertugas untuk menganalisis dan menafsirkan kumpulan data yang lebih kompleks. Mulai dari pengumpulan, pengolahan, hingga analisis data dalam jumlah besar. Data Scientist biasanya mengolah data yang didapatkan dari data engineer untuk melihat atau mencari peluang bisnis baru dari data yang data scientist harus memahami tantangan bisnis dan menawarkan solusi terbaik berdasarkan analisis dan pemrosesan data melalui eksperimen olah data.‍Tanggung JawabMengidentifikasi sumber pengumpulan data untuk kebutuhan bisnisMemproses, merapikan, dan mengintegrasikan dataMengotomasi pengumpulan data dan manajemen prosesnyaMenganalisis data dalam jumlah besar untuk memperkirakan trendMemberikan laporan beserta rekomendasi yang relevan‍Skill yang dibutuhkanMenggunakan program seperti Spreadsheet dan SQL. Memiliki kemampuan analisis dan statistik, pengambilan keputusan, komunikasi, dan soft-skills lainnya untuk bekerja sama dalam tim. Memiliki pengetahuan Machine Learning dan Deep Learning, Data Mining, optimasi data, dan programming tingkat lanjut C/C++, Perl, Python, SQL, dan Java.‍Business AnalystBusiness analyst bertugas untuk menganalisis dan memvalidasi berbagai hasil olah data untuk pemeliharaan, pengembangan, hingga menciptakan kebijakan pada suatu perusahaan. Kewajibannya pun erat kaitannya dengan efisiensi, produktivitas, dan peningkatan profut suatau usaha sembari menjembatani antara aset, pasar, dan perkembangan seorang business analyst memiliki tugas utama untuk mengidentifikasi bagaimana big data dapat dikaitkan dengan bisnis sehingga mendorong pertumbuhan bisnis yang berkaitan.‍Tanggung JawabMelakukan analisis bisnis secara terperinci mulai dari menguraikan masalah, peluang, hingga memberikan sousiBekerja untuk meningkatkan proses bisnis yang adaMenganalisis, merancang, dan menerapkan teknologi dan sistem untuk pengembangan bisnisMenganalisis harga‍Skill yang dibutuhkanAnalytical skill, komunikasi, riset, problem solving, visualisasi data, dokumentasi dan pembuatan laporan, mampu mengolah data dan SQL.‍Perbedaan Data Analyst, Data Engineer, Data ScientistJob roles data scientist dan data engineer sangat mirip. Namun, data scientist adalah orang yang mengurusi segala aktivitas terkait data. Untuk mengambil keputusan terkait bisnis, data scientist memiliki kemampuan dan lebih terintegrasi. Perbedaan tanggung jawab data analyst, data engineer, dan data scientist dirangkum pada infografis berikut!‍‍Dengan kisaran gaji setara UMR hingga bagi fresh grad, boleh dibilang pekerjaan di bidang data cukup menjanjikan bagi kamu yang merindukan kehidupan makmur nan berkecukupan. Ditambah lagi, beberapa profesi yang sudah dibahas di atas menuntut beraneka skill yang memungkinkanmu untuk bekerja secara independent. Dengan kata lain, kamu pun sangat punya kesempatan bergerak sendiri di luar kewajiban kantor untuk mendapatkan penghasilan Makin tertarik dengan data science? Gali ilmunya bareng Kuncie, yuk! Misalnyajobdesk seorang Data Engineer adalah sebagai pembuat infastruktur dari proses bagaimana data yang didapatkan dan diolah itu sesuai dengan apa yang dibutuhkan oleh DS dan DA. Berbeda halnya dengan Data Scientist yang layaknya sebagai seorang chef yang harus menguasai ilmu pengetahuan dalam membuat inovasi serta mampu memecahkan masalah yang terjadi pada sebuah restoran. Di zaman serba digital seperti sekarang, pernahkah kamu mendengar profesi data scientist, data analyst, dan data engineer? Ketiga profesi ini sangat erat sekali hubungannya dengan perkembangan teknologi dan pengolahan data loh. Gaji data scientist, data analyst, dan data engineer ini juga tak main-main, bisa puluhan hingga ratusan juta rupiah per bulannya. Penasaran seperti apa itu data scientist, data analyst, dan data engineer? Yuk simak penjelasannya! Seorang data scientist bertanggung jawab membersihkan, memproses, dan mengolah data besar yang sudah dikumpulkan oleh data engineer di suatu perusahaan. Data scientist juga tak jarang harus melakukan eksperimen untuk membuktikan dan memberikan saran yang paling tepat untuk perkembangan sebuah organisasi, perusahaan, dan badan usaha. Dalam pekerjaan sehari-hari, data scientist akan sering berhadapan dengan pertanyaan seperti “berapa banyak jenis pengguna yang dimiliki oleh perusahaan?” dan “bisakah menciptakan model yang bisa memprediksi suatu produk yang akan laris jika dijual untuk target pasar tertentu?” Pada intinya, pekerjaan sebagai data scientist adalah bagaimana kamu bisa menghasilkan suatu kesimpulan yang dapat dicerna dan diterima oleh semuanya, berdasar dari kumpulan data besar yang sudah ada. Setiap hari, data scientist berhadapan dengan program olah data seperti SQL dan Phyton. Setidaknya, kamu harus menguasai bidang pemrogaman data, komunikasi, matematika, statistik, dan eknomi. Baca Juga Manfaat dan Cara Backup Data Website Data analyst Profesi data analyst mengharuskanmu berhadapan dengan banyak data untuk dibersihkan, dianalisis, dan dibuatkan visualisasinya. Tugas data analyst adalah mencari insight untuk memajukan bisnis dari berbagai aspek, lalu kemudian diberikan pada data engineer. Pekerjaan data analyst juga bertanggung jawab untuk mengolah bahan yang diberikan untuk membuat eksperimen dan menentukan strategi bisnis lanjutan. Hari-harimu mungkin akan dihabiskan dengan visualisasi data yang menjadi penghubung tim pemasaran, tim penjualan, tim teknis, dan strategi bisnis. Data analyst juga bertanggung jawab menyelesaikan pertanyaan seperti “bagaimana cara kami menjelaskan kepada manajemen bahwa kenaikan biaya memengaruhi jumlah konsumen?” dan “apa yang mendorong pertumbuhan bisnis?” Untuk menyelesaikan pekerjaan sehari-hari, data analyst akan bekerja dengan program Excel, Tableau, dan SQL. Kamu harus menguasai istilah bisnis dan tools yang digunakan untuk membuat grafik/infografik. Baca Juga Perbedaan Entrepreneur, Intrapreneur, Technopreneur Data engineer Data engineer adalah profesi yang bertugas untuk mengembangkan dan membuat desain arsitektur manajemen data dan memonitor infrastrukturnya di dalam sebuah perusahaan. Kamu akan mengelola jalur data untuk perusahaan yang menangani data dalam jumlah besar. Kamu juga harus memastikan bahwa data bisa dikumpulkan dan diambil secara efisien dari sumber ketika dibutuhkan, dibersihkan dan diproses. Tujuannya adalah untuk membangun dan mengoptimalkan sistem perusahaan yang memungkinkan bagi data analyst dan data scientist menyelesaikan pekerjaan mereka. Kamu harus memiliki keahlian di bidang programming, big data, dan matematika. Sebagai seorang data engineer, kamu akan menggunakan program seperti NoSQL, Hadoop, dan Phyton. Kamu juga harus menguasai Databases, SQL, ETL Tools, Pipeline, shell script, dan basic programming. Data engineer juga harus mempunyai keahlian khusus di bidang programming, matematika, dan big data. Meski terdapat beberapa perbedaan data engineer dan data scientist serta data analyst, ketiga pekerjaan tersebut masih berhubungan dan saling terkait. Data analyst dan data scientist tidak akan bisa bekerja tanpa data engineer. Sedangkan data engineer juga tidak akan maksimal kerjanya tanpa data analyst dan data scientist. Saat ini, ada banyak sekali lowongan untuk ketiga profesi tersebut. Terlebih banyak sekali perusahaan yang membutuhkan seperti contohnya perbankan, kesehatan, pendidikan, media, hingga travel dan transportasi & logistik. Sehingga, kamu punya kesempatan yang besar untuk bisa menjadi data scientist atau data analyst. Semoga informasi ini bisa menambah pengetahuanmu, ya! Dewaweb Team Dewaweb Team menuliskan artikel dengan sepenuh hati. Topiknya mulai dari bisnis online, digital marketing, sampai website development. Yuk daftarkan email kamu ke newsletter Dewaweb di sebelah kanan untuk mendapatkan info terbaru dari Dewaweb!
SeorangData Analyst mungkin menghabiskan lebih banyak waktu untuk analisis rutin, memberikan laporan secara teratur. Sedangkan Seorang Data Scientist dapat merancang cara data disimpan, dimanipulasi, dan dianalisis. Sederhananya, seorang Data Analyst memahami data yang ada, sedangkan seorang Data Scientist bekerja pada cara-cara baru untuk

Apakah anda pernah mendengar jargon Industry Perlu saya informasikan, sebenarnya jargon ini tidak harus berjalan berurutan. Maksudnya apa? Dalam sebuah negara, bisa jadi dua atau lebih versi industri ini berjalan bersamaan. Contoh manufaktur di India masih berjalan di sedangkan aerospace-nya sudah Berdasarkan studi yang dilakukan di Eropa, efek dari perkembangan teknologi digital dan digitalisasi bagi perusahaan adalah sebagai berikut Kalau direnungkan dengan perlahan, mulai dari big data sampai internet of things itu erat kaitannya dengan data. Banyak dari kita yang belum sadar bahwa muara dari digitalisasi ini adalah banyaknya captured data. Saking banyaknya, hampir setiap detik kita bisa memproduksi data dari gadget kita masing-masing. Selain itu data yang muncul bukan lagi berupa tabel angka! Postingan yang Anda lakukan di Instagram juga bisa disebut data! Pada tahun 2006, Profesor Thomas Davenport dalam artikel di HBR menyebutkan bahwa Every companies can sell same products, can provide same services. Lalu apa pembedanya? Pembedanya adalah Analytics! Yaitu kemampuan perusahaan untuk bisa mengeksplorasi dan mengeksploitasi data yang ada di internal dan eksternal organisasinya. Oleh karena itu, kondisi sekarang menjadi semakin rumit. Tools tradisional semacam Ms. Excel sudah tidak mampu mengolah data yang bentuk dan strukturnya makin lama makin aneh yang datang semakin cepat dan banyak serta dengan tujuan dan metode analisa yang lebih advance. This leads us to a new job titles Data engineer A Data Engineer is a person who specializes in preparing data for analytical usage. Data analyst A data analyst in a person who extract information from a given pool of data. Data scientist A data scientist is a person who possess knowledge of statistical tools and programming skills. Moreover, a data scientist possesses knowledge of machine learning algorithms. Masih bingung? Saya kasih contoh data Covid 19 yang tersedia di situs World o Meters. Seorang data engineer bertugas untuk menyiapkan platform penyimpanan data cloud atau on premise, memikirkan bagaimana struktur data yang akan disimpan, dan menyiapkan data untuk bisa dianalisa lebih lanjut. Oleh karena itu dia harus memiliki knowledge lebih terkait data warehouse. Seorang data analyst bertugas untuk memberikan narasi dan analisa deskripsi dari data. Oleh karena itu dia harus memiliki basic knowledge terkait statistik dan business process. Seorang data scientist bertugas untuk membuat model matematika atau statistik untuk melakukan prediksi atau deep dive analysis dari data. Oleh karena itu dia harus memiliki knowledge terkait machine learning dan advance algorithms. Kenapa hal ini menjadi penting? Biasanya saya selalu menginformasikan hal ini setiap kali hendak memberikan training seputar data. Faedahnya adalah agar trainee bisa menentukan ekspektasi mereka sendiri seperti apa. Roles mana yang ia akan lakukan di fungsi pekerjaannya sehari-hari. Namun, untuk beberapa orang yang bekerja di environment yang kecil, bisa jadi ketiga roles di atas dikerjakan oleh satu orang saja. Implikasinya apa? Orang tersebut minimal harus mengerti struktur data, mau disimpan di mana dan dengan cara seperti apa sampai nanti akan dianalisa seperti apa.

Sementaraitu, data scientist bertugas untuk mendesain dan menjahit baju dari kain. Ia andal dalam menggunting, menjahit, dan memilih kain dari data engineer sebagai bahan baku baju tertentu. Nah, lewat analogi ini, kamu tentu bisa memahami bahwa data scientist adalah orang yang bertugas mengolah data dari data engineer.
Perbedaan Data Engineer, Data Science, dan Data Analyst dalam Lingkup Pekerjaan Seiring perkembangan era informasi dan big data saat ini, profesi terkait bidang atau ilmu data semakin beragam dan spesifik, seperti Data Engineer, Data Scientist, Data Analyst. Profesi-profesi tersebut banyak diminati oleh berbagai kalangan, karena ketiga profesi ini sangat erat hubungannya dengan data. Meskipun sama-sama berhubungan dengan data, baik Data Engineer, Data Scientist, dan Data Analyst sebenarnya memiliki perbedaan yang cukup signifikan. Ketiga profesi ini memiliki peranan dan tanggung jawabnya masing-masing. Mari kita jabarkan satu per satu lingkup pekerjaan antara Data Engineer, Data Scientist, dan Data Analyst. 1. Data Engineer Data Engineer adalah seseorang yang bertugas untuk mengembangkan dan membuat desain arsitektur manajemen data, serta memelihara atau memonitor infrastruktur data di perusahaan. Profesi ini akan mengelola jalur data untuk perusahaan yang menangani data dalam jumlah besar. Data Engineer juga harus memastikan bahwa data bisa dikumpulkan dan diambil secara efisien dari sumber ketika dibutuhkan, lalu dibersihkan dan diproses. Skills yang dibutuhkan untuk menjadi Data Engineer SQL dan database tingkat lanjutMachine learningArsitektural data dan pipeliningScripting dan visualisasi dataData warehousePemprograman tingkat lanjutHadoop-based Analytics Dapat disimpulkan bahwa, lingkup pekerjaan Data Engineer yaitu Bertugas untuk mengembangkan dan membuat desain arsitektur manajemen data, serta memelihara atau memonitor infrastruktur data di keakuratan data dan fleksibilitas mengurai, mengevaluasi, dan membersihkan data mentah menjadi clean data. 2. Data Scientist Data Scientist adalah seseorang yang menganalisis dan menafsirkan kumpulan data yang kompleks. Mulai dari pengumpulan, mengolah, dan menganalisis data dalam jumlah besar. Data Scientist bertugas mengolah data yang didapatkan dari Data Engineer, dan melihat apakah ada peluang bisnis baru dari data yang dikumpulkan. Skills yang dibutuhkan untuk menjadi Data Scientist Spreadsheet dan SQLAnalisis dan statisticMachine learning dan deep learningData miningOptimasi dataProgramming tingkat lanjut seperti C/C++, Perl, Phyton, SQL, dan Java Dapat disimpulkan bahwa, lingkup pekerjaan Data Scientist diantaranya Membersihkan, memproses, dan mengolah data dalam perencanaan strategis untuk analisis dan mengoptimalkan penggunaan Machine Learning. 3. Data Analyst Data Analyst adalah seseorang yang bertanggungjawab mengolah data, menarik kesimpulan, dan melakukan visualisasi data. Profesi sebagai Data Analyst dituntut untuk berhadapan langsung dengan banyak data. Tugas seorang Data Analyst adalah mencari insight untuk memajukan bisnis dari berbagai aspek. Skills yang dibutuhkan untuk menjadi Data Analyst Spreadsheet dan SQLScripting, statistic, dan matematikaMembuat laporan dan visualisasi dataData warehouseAdobe dan google analyticsBusiness intelligence toolsBahasa pemprograman statistic seperti R dan Phyton Dapat disimpulkan bahwa, lingkup pekerjaan Data Analyst yaitu Merapihkan, menganalisis, dan membuat visualisasi data melalui laporan dan visualisasi dengan tim manajemen untuk dapat memahami kebutuhan bisnis. Setelah mengetahui scope of work antara Data Engineer, Data Scientist, dan Data Analyst. Mana bidang profesi yang ingin Anda tekuni? Rekomendasi artikel Sunartha lainnya Perbedaan Tableau vs Microsoft Power BIVisualisasi Data Menggunakan TableauBelajar Tableau Business Intelligence Tools untuk pemula
Karenatujuan utama data engineer adalah membuat data dapat diakses secara maksimal agar data scientist dan data analyst dapat mengoptimalkan kinerja mereka. Mereka mengembangkan, membangun, menguji dan memelihara arsitektur database dalam skala besar untuk memastikan bahwa kebutuhan bisnis terpenuhi serta menyediakan dan menerapkan cara untuk meningkatkan keandalan, efisiensi, dan kualitas data. Data Analyst
Saat ini, pekerjaan yang terkait dengan pengolahan informasi dari big data menjadi pekerjaan yang sedang hits dan paling banyak dicari, terutama bagi para fresh graduate. Big data adalah kumpulan data yang sangat besar dan dapat dianalisis secara komputasi. Pekerjaan terkait big data yang sedang digandrungi saat ini antara lain adalah Data Engineer, Data Scientist, dan Data Analyst. Secara umum, ketiga role ini saling membutuhkan satu sama lain. Namun, masih banyak yang belum mengetahui perbedaan antara data engineer, data scientist, dan data analyst pada praktiknya di sebuah perusahaan. Oleh sebab itu, Career Network mencoba merangkum penjelasan terkait bagaimana cara penyimpanan sebuah data dari aplikasi hingga akhirnya data tersebut bisa digunakan untuk berbagai keperluan analisis yang dilakukan oleh ketiga role tersebut melalui ilustrasi pada Gambar 1. Diagram Ilustrasi Mekanisme Penyimpanan Data Sumber Modifikasi dari Youtube Mira's BlackboxMekanisme Penyimpanan DataKetika seorang konsumen membeli sebuah produk berupa barang maupun jasa melalui aplikasi website atau mobile, seluruh data yang berhubungan dengan user, produk, metode pembayaran, transaksi, serta penggunaan device akan tersimpan dalam sebuah database yang disebut production database. Selain itu, data yang berhubungan dengan user behaviour juga bisa didapatkan menggunakan tracker seperti Google Analytics dan umumnya disimpan ditempat yang terpisah dari production database. Kumpulan dari data tersebut tentunya akan sangat banyak, besar, dan beragam, namun tidak semua data dibutuhkan untuk analisis. Data-data tersebut nantinya akan dibersihkan terlebih dahulu melalui proses data cleaning dalam sebuah temporary storage, kemudian diolah kembali baik secara berkala maupun real-time dalam data lake atau data warehouse. Setelah itu, kumpulan data tersebut akan dianalisis sesuai dengan kebutuhan perusahaan. Data lake umumnya menyediakan data yang dapat dianalisis untuk menentukan model machine learning, sedangkan data warehouse cenderung menyediakan data yang dapat dianalisis untuk menghasilkan sebuah dashboard atau Data EngineerData Engineer adalah orang yang bertanggungjawab pada keberlangsungan infrastruktur big data sebelum dianalisis. Singkatnya, seorang data engineer akan terlibat dalam aktivitas yang berhubungan dengan persiapan data. Jika kita ibaratkan dengan Perusahaan Daerah Air Minum PDAM, data engineer adalah seseorang yang mengatur pipa aliran air agar dapat sampai ke kompleks perumahan. Namun pada praktiknya, yang dialirkan oleh seorang data engineer bukanlah air, melainkan sekumpulan data. Berdasarkan ilustrasi pada Gambar 1, peran data engineer ditandai dengan kotak berwarna merah. Data engineer akan memastikan bagaimana caranya data dari production database bisa direplikasi, kemudian dimasukan ke temporary storage, hingga ke data warehouse. Selain itu juga berperan dalam mengolah data dari Google Analytics dan menentukan data storage yang cocok untuk tipe data tertentu. Tanpa seorang data engineer, kemungkinan peran data scientist dan data analyst akan terganggu. Umumnya, latar belakang data engineer berasal dari jurusan IT ataupun Software Engineer yang mahir dalam melakukan coding menggunakan software seperti Data ScientistData Scientist memiliki tugas yang cukup spesifik, yaitu bertanggungjawab dalam mencari solusi dari permasalahan bisnis yang bersifat prediktif. Seorang data scientist akan mengaplikasikan artificial intelegence dan menafsirkan data yang kompleks untuk memecahkan berbagai permasalahan bisnis. Pada Gambar 1, peran data scientist ditandai dengan kotak berwarna kuning. Data yang telah diolah dan dimasukkan ke data lake akan dianalisis lebih lanjut menggunakan teknik machine learning. Selain itu, pekerjaan data scientist akan banyak berhubungan dengan riset, eksperimen, serta data exploration. Latar belakang pendidikan dari seorang data scientist umumnya berasal dari jurusan Data AnalystData Analyst berfokus pada manipulasi dan analisis data untuk menjawab pertanyaan yang bersifat deskriptif. Intinya, seorang data analyst bertanggungjawab dalam menganalisis data numerik dan data historical untuk membantu membuat keputusan yang lebih baik berdasarkan kondisi perusahaan. Kotak berwarna hijau pada Gambar 1 menandakan peran yang dilakukan oleh data analyst saat menganalisis dari data warehouse menjadi sebuah laporan ataupun dashboard. Contohnya, seorang data analyst akan menafsirkan data dengan statistik ketika diminta oleh CEO untuk melihat seberapa besar pendapatan perusahaan selama lima tahun terakhir, atau ketika diminta tim produksi untuk melihat produk yang paling laris dijual di dengan data engineer dan data scientist, latar belakang pendidikan data analyst cenderung lebih beragam. Hal tersebut dikarenakan skillset yang harus dimiliki oleh seorang data analyst bisa dipelajari secara mandiri tanpa harus menempuh pendidikan formal terlebih dahulu. Salah satu skill yang harus dikuasai untuk menjadi Data Analyst adalah Microsoft Excel. Saat ini, Excel menjadi tools awal yang wajib dimiliki oleh seorang data analyst, bahkan beberapa perusahaan hanya menggunakan Excel untuk menganalisa data mereka, mulai dari data processing hingga visualisasi Karir sebagai Data Analyst Bersama Career NetworkKhusus untuk Networkers yang baru mau mengenal Excel dan masih kesulitan untuk memahami materi terkait big data, bisa mulai belajar di Online Training Class Basic Data Analyst with Microsoft Excel yang diadakan oleh Career Network, nih! Tentunya akan dipandu khusus oleh Kak Aryadimas Suprayitno, seorang Microsoft Excel Trainer, dengan benefit dan materi pembelajaran yang cocok untuk Networkers yang ingin berkarir sebagai Data Analyst. Yuk segera daftarkan diri kamu!Gambar 2. Poster Kelas Pelatihan ExcelGambar 3. Benefit Kelas Pelatihan ExcelPenulis Qanita Hana AmiraReferensiSetiawan, I. 2021. Perbedaan Data Engineer, Data Scientist, dan Data Analyst. Widya Accarya Jurnal Kajian Pendidikan FKIP Universitas Dwijendra, 122 306─ Mira's Blackbox Youtube Ngomongin Data Science dan AI
4hXE.
  • eeau8uxy7l.pages.dev/208
  • eeau8uxy7l.pages.dev/13
  • eeau8uxy7l.pages.dev/365
  • eeau8uxy7l.pages.dev/194
  • eeau8uxy7l.pages.dev/179
  • eeau8uxy7l.pages.dev/203
  • eeau8uxy7l.pages.dev/96
  • eeau8uxy7l.pages.dev/32
  • eeau8uxy7l.pages.dev/4
  • perbedaan data analyst dan data scientist dan data engineer